Все знают, что никто не знает есть/была ли жизнь на Марсе. Это первая загадка. Пятнадцать лет назад второй загадкой была вода на Марсе. Сейчас ее уже многократно разгадали - воду нашли, картографировали, изучили с поверхности. Но к тому времени нашли загадку не менее важную - марсианский метан.
Метан - это простое органическое соединение с одним атомом углерода и четырьмя - водорода. Метан занимает большую роль в жизни человечества на Земле, так как это основной компонент природного газа. Углеводороды все называют органическими, но далеко не все относится к организмам. Однако сейчас считается, что до 90% земного метана, в том числе запасенного в недрах, имеет биологическое происхождение. В то же время в космосе его тоже немало. Метан регистрировали на кометах, в атмосфере Юпитера метан занимает массу равную трем планетам Земля, а на спутнике Сатурна Титане текут метановые реки в ледяных берегах.
Пока ученые думали, откуда метан появился на Марсе, он пропал. То есть практически совсем. Не рассеялся в атмосфере до какого-то усредненного значения, а просто исчез, оставив совсем уж ничтожные концентрации, которые едва регистрировались доступными на тот день приборами.
Ученые приняли вызов, и к 2012 году снарядили марсоход Curiosity, который оборудовали чутким газоанализатором, способным определять метан атмосфере. Правда, послали его не туда, где наблюдались выбросы метана, так как главными в проекте были геологи, а у них нашлись свои цели в кратере Гейла.
Успешно высадившись и освоившись на Марсе, Curiosity провел первые исследования и признал, что метана нет. Точнее нет в той концентрации, которая была доступна его приборам. Астрономы с Земли практически подтвердили его результаты - метана и правда было совсем мало, на пределе разрешающей способности земных спектрометров.
Пока исследователи размышляли о марсианском метане Шредингера, прошел еще год и Curiosity прислал новые данные - таинственный газ снова появился в кратере Гейла… А потом снова пропал.
Сотрудничество по "ЭкзоМарсу" строится по принципам уже отработанным на "Экспрессах": Россия обязалась предоставить две ракеты "Протон-М" для запуска спутника и марсохода, и на аппаратах будут установлены российские научные приборы вместе с европейскими. Первым рейсом отправляется спутник Trace Gas Orbiter. Он должен сбросить тестовый спускаемый модуль Schiaparelli, а потом несколько лет заниматься разгадыванием метановой головоломки. Заодно он сможет определить низкие концентрации других газов в атмосфере Марса, если они там есть. Например, если местные вулканы не совсем еще закаменели и хотя бы немного сочатся вулканическими газами, TGO должен найти эти газы и определить их источники.
Вообще, если предыдущее десятилетие было посвящено изучению геологии Марса, как с орбиты, так и с поверхности, то сейчас уже идет "атмосферный" этап. Еще два года назад к Марсу прибыли американский аппарат MAVEN и индийский Mars Orbiter. Аппарат NASA четко заточен под изучение атмосферы и магнитосферы Марса, но он занимается верхними слоями и их взаимодействием с космическим ветром. То есть MAVEN должен ответить на вопрос, как Марс теряет свою атмосферу, в то время как ExoMars TGO будет искать возможные источники ее пополнения из недр планеты.
Индийские ученые тоже заинтересовались метановым вопросом и даже снарядили отдельный прибор для его поиска, но пока только тестируют его. И надо понимать, что он вряд ли покажет качество выше, чем у Mars Express. Все-таки индийцы здраво оценивают свои возможности в межпланетных исследованиях и подчеркивают более демонстрационное значение своего аппарата.
ExoMars TGO - это трехметровый четырехтонный комический аппарат, который несет на борту 600 килограммовую "летающую тарелку" Schiaparelli и четыре основных научных прибора.
Два главных научных прибора ExoMars TGO: европейский NOMAD и российский ACS являются блоками нескольких спектрометров и частично дополняют друг друга, но захватывают разные диапазоны световых волн. Именно на них возлагается главная задача миссии - картография газов атмосферы Марса.
На Земле жизнь предпочитает выделять метан с легким изотопом С12, так как его легче связывать с водородом в результате биохимических процессов. Геологические процессы не так избирательны, и в них С12 и С13 формируют метан примерно в равных пропорциях. Кроме метана, на биологическую активность может указывать аммиак, который точно так же выделяется живыми организмами в результате жизнедеятельности. Пока аммиака на Марсе не находили, но, если он хоть немного содержится в атмосфере, то TGO его найдет. Разумеется, ученые знают только земную жизнь и фактически ее признаки ищут на Марсе, но за неимением альтернатив приходится "искать там, где светлее". В свое оправдание они говорят, что законы физики и химии на наших планетах работают одинаково, геологическое строение похожее, а когда-то и условия были схожи, поэтому нет оснований полагать, что эволюция вещества из неживого в живое проходила как-то иначе.
К слову сказать, до конца неясно, как на Земле-то проходил процесс зарождения жизни, и это, кстати, важный аргумент в пользу исследования Марса. Казалось бы, зачем вваливать сотни миллионов долларов, чтобы найти того, кто напустил газу на другой планете? А вот для того - чтобы понять, как мы на нашей-то планете оказались.
Сейчас уже мало кто из ученых всерьез полагает, что мы можем оказаться марсианами-переселенцами, в виде бактерий добравшиеся на метеоритах с Марса на Землю. Скорее обратный вариант - найдя на Марсе местную жизнь придется доказать, что она действительно местная, а не залетела с Земли. Но все-таки, Марс является такой относительно независимой лабораторией, где вдалеке от Земли мог проводиться повторный природный эксперимент по созданию живой материи, способной к осознанию себя, окружающего мира, запуску космических аппаратов и написанию постов.
Кроме оптических спектрометров, TGO несет на борту еще камеру CaSSIS, которая сможет снимать поверхность с разрешением до пяти метров, и проводить стереосъемку местности. Предыдущий аппарат ESA Mars Express уже много лет ведет свои наблюдения за поверхностью, и периодически радует шикарными панорамами. Его разрешение до 20 метров, то есть снимки TGO будут охватывать более узкие полосы местности, зато детали поверхности видны будут лучше. Снимки этой камеры будут использованы в том числе для выбора места посадки будущего марсохода Paster, который должен стартовать в 2018 или в 2020-м году.
Четвертый прибор TGO снова российский - нейтронный детектор FREND. Его задача - картографирование содержания воды в грунте Марса на глубине до одного метра.
Нейтронные детекторы регистрируют нейтроны, которыми планету бомбардирует Солнце. Часть нейтронов "отскакивает" от планеты, предварительно погрузившись в грунт на полметра или чуть больше. Скорость их возврата зависит от того, встретились ли они с водородом в грунте. Чем больше водорода, тем медленнее летят нейтроны. Регистрируя скорость нейтронов, можно определять, сколько водорода сокрыто в поверхности, а наиболее вероятный резервуар этого летучего газа - водяной лед. Предыдущее поколение детектора - HEND - летает на американском аппарате Mars Odyssey с 2001 года. Грубо говоря, он ловит все нейтроны, которые вылетают с поверхности, независимо от угла отражения. Поэтому очень сложно определить, откуда какой прилетел и карты распределения воды, которые помог составить HEND слишком мелкого масштаба.
Старт успешно произведен сегодня в 12:31 МСК, ракета "Протон-М" справилась с задачей и теперь ответственность за выведение лежит на разгонном блоке "Бриз-М". Отделение космического аппарата от разгонного блока ожидается в 23:15 МСК.